Communication

Multiple Insertion of a Silyl Vinyl Ether by (\#-Diimine)PdMe Species

Changle Chen, Shuji Luo, and Richard F. Jordan
J. Am. Chem. Soc., 2008, 130 (39), 12892-12893 • DOI: 10.1021/ja8056858• Publication Date (Web): 09 September 2008

Downloaded from http://pubs.acs.org on February 8, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Links to the 2 articles that cite this article, as of the time of this article download
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML

ACS Publications

Multiple Insertion of a Silyl Vinyl Ether by (α-Diimine)PdMe ${ }^{+}$Species

Changle Chen, Shuji Luo, and Richard F. Jordan*
Department of Chemistry, The University of Chicago, 5735 South Ellis Avenue, Chicago, Illinois, 60637

Received July 21, 2008; E-mail: rfjordan@uchicago.edu

The polymerization of functionalized $\mathrm{CH}_{2}=\mathrm{CHX}$ vinyl monomers by metal-catalyzed insertion mechanisms may enable catalystbased control of polymer microstructure and the synthesis of new materials that are unavailable by radical or ionic polymerization. ${ }^{1}$ This approach will require systems that undergo multiple insertions of $\mathrm{CH}_{2}=\mathrm{CHX}$ monomers into metal-alkyl bonds. Rh, Ru, Ni, and Pd species catalyze the tail-to-tail dimerization of methyl acrylate (MA) by $1,2-\mathrm{MA}$ insertion into a metal hydride bond to yield $\mathrm{L}_{n} \mathrm{MCH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{CH}_{3}$ species followed by 2,1-MA insertion and β-H elimination to release a dimer and regenerate the metal hydride. ${ }^{2}$ Here we report that (α-diimine) PdMe^{+}species (α-diimine $\left.=\left(2,6-{ }^{-} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{N}=\mathrm{CMeCMe}=\mathrm{N}\left(2,6-{ }_{-}{ }^{\mathrm{P}} \mathrm{Pr}_{2}-\mathrm{C}_{6} \mathrm{H}_{3}\right)\right)$ undergo up to three sequential insertions of a silyl vinyl ether, ultimately forming Pd allyl products.
We reported that $[(\alpha$-diimine $) \mathrm{PdMe}]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(1-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right)$ copolymerizes α-olefins and $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}(2)$ to form $\mathrm{OSiPh}_{3}-$ substituted polyolefins, which can be desilylated to form hydroxy polyolefins. ${ }^{3}$ Mechanistic studies showed that $1-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ reacts with stoichiometric quantities of alkyl, aryl, and silyl vinyl ethers (VEs) by sequential (i) VE coordination to form the (α-diimine) Pd$(\mathrm{Me})(\mathrm{VE})^{+} \pi$-complex (3), (ii) 1,2 insertion to give O-chelated (α diimine) $\mathrm{PdCH}_{2} \mathrm{CH}(\mathrm{OR}) \mathrm{Me}^{+}$(4), (iii) reversible chain walking by β-H elimination/reinsertion to form O-chelated $(\alpha-$ diimine) $\mathrm{PdCMe}_{2} \mathrm{OR}^{+}$(5), and (iv) irreversible β-OR elimination of 4 to form $(\alpha$-diimine $) \operatorname{Pd}(O R)(\text { propene })^{+}$(not observed), which (v) undergoes allylic $\mathrm{C}-\mathrm{H}$ activation to yield (α-diimine) $\operatorname{Pd}\left(\eta^{3}\right.$ allyl $)^{+}$(6) and ROH. 1-Catalyzed copolymerization of olefins and $\mathbf{2}$ is possible because (α-diimine) $\mathrm{PdCH}_{2} \mathrm{CH}\left(\mathrm{OSiPh}_{3}\right) \mathrm{R}^{+}$species are trapped by olefin and undergo subsequent insertion faster than they undergo β - OSiPh_{3} elimination leading to inactive Pd -allyl species, and because 2 is not electron-rich enough to be cationically polymerized by 1 . These results suggested that (α-diimine) PdMe^{+} species might undergo multiple insertions of $\mathbf{2}$ when $\mathbf{2}$ is present in excess.
The reaction of (α-diimine) $\mathrm{PdMeCl}, 1$ equiv of $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, and 8 equiv of 2 in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$ $(6 \mathrm{~h})$ followed by warming to $23{ }^{\circ} \mathrm{C}(6 \mathrm{~h})$ and stirring for 6 h yields $\left[(\alpha\right.$-diimine $) \mathrm{Pd}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHCH}\left(\mathrm{OSiPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiPh}_{3}\right)\right.$ $\mathrm{Me}\}]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]\left(7-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right)$ in 83% NMR yield (eq 1). 7 is formed as a $95 / 5$ mixture of isomers $(7 \mathbf{a} / 7 \mathbf{b})$, which is converted to an equilibrium 40/60 mixture after 2 days at room temperature. The kinetically favored isomer 7a was isolated as red crystals in 35% yield by recrystallization from benzene/hexanes. Under these conditions, 7a crystallizes as a racemic conglomerate, i.e. as a mixture of individual crystals that are enantiomerically pure but together comprise a racemate. ${ }^{4}$ X-ray diffraction analysis (Figure 1) established that the kinetically favored isomer 7 a is a Pd allyl complex with a $-\mathrm{CH}\left(\mathrm{OSiPh}_{3}\right) \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{OSiPh}_{3}\right) \mathrm{Me}$ substituent syn to the central allyl hydrogen $\left(\mathrm{H}_{\mathrm{c}}\right)$. The configuration of $7 \mathbf{a}$ is S, S, S (ent-R,R,R), where the descriptors refer to the configurations of the substituted allyl carbon and the side chain methine carbons,

Figure 1. Structure of the cation of $S, S, S-\mathbf{7 a}-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$. Only the ipsocarbons of the $\mathrm{Si}-\mathrm{Ph}$ groups are included. The allyl and methine hydrogens of the allyl group are shown; other hydrogens are omitted.
respectively. The $-\mathrm{OSiPh}_{3}$ substituents would both point toward Pd in the fully extended conformation of the side chain, as shown in eq 1 .

As 7a and 7b interconvert under mild conditions and are the only isomers of 7 detected in eq 1 , it is likely that they differ in the stereochemistry of the Pd-allyl unit. In the ${ }^{1} \mathrm{H}$ and COSY NMR spectra of 7a, the allyl H_{c} resonance (see eq 1) appears as a triplet of doublets at $\delta 5.05(J=12,7 \mathrm{~Hz})$, which is coupled to a doublet of doublets at $\delta 2.82\left(\mathrm{H}_{\mathrm{a}}^{\prime}, J_{\mathrm{H}_{\mathrm{a}}^{\prime}-\mathrm{H}_{\mathrm{c}}}=12 \mathrm{~Hz}\right.$, characteristic of anti coupling), a doublet at $2.71\left(\mathrm{H}_{\mathrm{s}}, J=7 \mathrm{~Hz}\right.$, syn coupling), and a doublet at $2.59\left(\mathrm{H}_{\mathrm{a}}, J=12 \mathrm{~Hz}\right.$, anti coupling). For $7 \mathbf{b}$, the H_{c} resonance appears as a triplet of doublets at $\delta 5.34(J=12,7 \mathrm{~Hz})$, which is coupled to a doublet of doublets at $\delta 4.20\left(\mathrm{H}_{\mathrm{a}}{ }^{\prime} ; J_{\mathrm{H}_{\mathrm{a}}{ }^{\prime}-\mathrm{H}_{\mathrm{c}}}=\right.$ $12 \mathrm{~Hz})$, a doublet at $2.79\left(\mathrm{H}_{\mathrm{s}}, J=7 \mathrm{~Hz}\right)$, and a doublet at $2.58\left(\mathrm{H}_{\mathrm{a}}\right.$, $J=12 \mathrm{~Hz}$). These results show that the allyl side chain is syn to H_{c} in both isomers. Therefore, $\mathbf{7 a} / \mathbf{b}$ must differ in the allyl enantioface that the Pd unit is coordinated to; i.e. the configuration of 7b is R, S, S (ent-S,R,R). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$, and DEPT NMR, 2-D NMR, ESI-MS, and elemental analysis results are fully consistent with the proposed structures of $\mathbf{7 a}, \mathbf{b}$. $7 \mathbf{a}, \mathbf{b}$ probably interconvert via a σ-allyl intermediate. ${ }^{5}$

Similarly, the reaction of (α-diimine) $\mathrm{PdMeCl}, 1$ equiv of $\mathrm{Ag}\left[\mathrm{SbF}_{6}\right]$, and 8 equiv of $\mathbf{2}$ under the conditions of eq 1 yields

Scheme 1. $\mathrm{Pd}=(\alpha$-diimine $) \mathrm{Pd} ; \mathrm{R}=\mathrm{SiPh}_{3}$

[$(\alpha$-diimine $\left.) \operatorname{Pd}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHCH}\left(\mathrm{OSiPh}_{3}\right) \mathrm{Me}\right\}\right]\left[\mathrm{SbF}_{6}\right]\left(8-\mathrm{SbF}_{6}\right)$ in $90-100 \%$ NMR yield (eq 2). Compound $\mathbf{8}$ was isolated in 81% yield as a $90 / 10$ mixture of isomers $(\mathbf{8 a} / \mathbf{8} \mathbf{b})$, which converts to a 70/30 equilibrium mixture in 7 days at room temperature.

Compound $8-\mathrm{SbF}_{6}$ was identified by NMR, ESI-MS, and elemental analysis. In the ${ }^{1} \mathrm{H}$ and COSY NMR spectra of the major isomer 8a, the side chain H_{α} resonance appears at $\delta 3.03$ (q of d, $J=6,3 \mathrm{~Hz}$), and is coupled to the allyl $\mathrm{H}_{\mathrm{a}}{ }^{\prime}$ resonance at $\delta 3.71$ $(\mathrm{dd}, J=12,3 \mathrm{~Hz})$ and a doublet at $\delta 0.70\left(J=6 \mathrm{~Hz}, \mathrm{H}_{\beta}\right)$. The allyl H_{c} resonance appears as a triplet of doublets at $\delta 5.70(J=$ $12,7 \mathrm{~Hz})$, which is coupled to $\mathrm{H}_{\mathrm{a}}{ }^{\prime}(J=12 \mathrm{~Hz})$, a doublet at $\delta 3.15$ $\left(\mathrm{H}_{\mathrm{a}}, J=12 \mathrm{~Hz}\right)$, and a doublet at $\delta 3.09\left(\mathrm{H}_{\mathrm{s}}, J=7 \mathrm{~Hz}\right)$. The NMR data for $\mathbf{8 b}$ are similar. These results show that the $-\mathrm{CH}\left(\mathrm{OSiPh}_{3}\right)$ Me group is syn to H_{c} in both isomers and imply that, as for $7 \mathbf{a}, \mathbf{b}, \mathbf{8 a}, \mathbf{b}$ differ in the allyl enantioface that the Pd unit is coordinated to. The specific configurations of $\mathbf{8 a}, \mathbf{b}$ have not yet been determined. The ESI-MS spectrum of $8-\mathrm{SbF}_{6}$ contains a major signal for (α-diimine) $\mathrm{Pd}\left\{\eta^{3}-\mathrm{CH}_{2} \mathrm{CHCHCH}\left(\mathrm{OSiPh}_{3}\right) \mathrm{Me}^{+}\right.$ (calcd $m / z=853.4$, found 853.3). The reaction of $8-\mathrm{SbF}_{6}$ with $\mathrm{Et}_{3} \mathrm{SiH}$ gave trans $-\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}\left(\mathrm{OSiPh}_{3}\right) \mathrm{CH}_{3} .{ }^{6}$
$8-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ is formed as a minor product in eq $1(17 \% \mathrm{NMR})$, and $7-\mathrm{SbF}_{6}$ is a minor product of eq $2(0-10 \%$ NMR $){ }^{7}$

These results are consistent with the mechanism in Scheme 1. In situ formation of $\mathbf{1}$ and coordination of 2 generate the $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3} \pi$-complex 3. 3 undergoes 1,2 insertion to give $\mathbf{4}$, reversible chain walking to give $\mathbf{5}$, and $\beta-\mathrm{OSiPh}_{3}$ elimination from 4 to give $\mathbf{6}$ and $\mathrm{Ph}_{3} \mathrm{SiOH}$. In the presence of excess 2, $\mathbf{4}$ undergoes a second insertion of $\mathbf{2}$ to form $\mathbf{9}$, which can undergo
$\beta-\mathrm{OSiPh}_{3}$ elimination and allylic $\mathrm{C}-\mathrm{H}$ activation to form $\mathbf{8}$, or a third insertion of $\mathbf{2}$ to form $\mathbf{1 0}$, ultimately leading to $\mathbf{7}$.

In agreement with Scheme 1, when lower concentrations of 2 are used, the yields of the multiple insertion products are reduced. For example, the reaction of (α-diimine) $\mathrm{PdMeCl}, 1$ equiv of $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, and 2 equiv of $\mathbf{2}$ under the conditions of eq 1 yields a mixture of $\mathbf{6}(33 \%), \mathbf{8 a} / \mathbf{8 b}(58 \%, 60 / 40$ ratio $)$, and 7a/7b ($9 \%, 83 / 17$ ratio). ${ }^{1} \mathrm{H}$ NMR monitoring of the reaction of the isolated complex $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}(\mathrm{Me})\left(\mathrm{Et}_{2} \mathrm{O}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ with 8 equiv of $\mathbf{2}$ in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ at $-20^{\circ} \mathrm{C}$ reveals the formation of $\mathbf{3}(30 \%)$, $5(18 \%)$, and unreacted $\left[(\alpha\right.$-diimine $\left.) \operatorname{Pd}(\mathrm{Me})\left(\mathrm{Et}_{2} \mathrm{O}\right)\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right](52 \%)$ after 2 h and subsequent conversion to a mixture of $\mathbf{8 a} / \mathbf{8 b}(55 \%$, $74 / 26$ ratio), 7a/7b ($41 \%, 47 / 53$ ratio) and an unidentified Pd-allyl species (4%) after 20 h . The proposed intermediates $\mathbf{9}$ and $\mathbf{1 0}$ were not detected, but transient signals at $\delta 0.34$ and 0.10 were observed at intermediate times, which may be due to the $\operatorname{PdCMe}\left(\mathrm{OSiPh}_{3}\right) \mathrm{CH}_{2}-$ groups of $\mathbf{1 1}$ and $\mathbf{1 2}$, the expected chain walk isomers of $\mathbf{9}$ and $\mathbf{1 0}$. Further studies are required to understand the factors (counterion, presence of $\mathrm{Et}_{2} \mathrm{O}$ or Cl^{-}, etc.) that control the product distribution in Scheme 1 and to optimize conditions to favor chain growth. ${ }^{8}$

The stereochemistry of 7a implies that the three insertions leading to $\mathbf{1 0}$ occur with the same face selectivity (i.e. isotactic). This result may reflect the stereoselectivity of the insertion steps or may result from a chain end epimerization process involving olefin face exchange (alkene flipping) of the (α-diimine) $\mathrm{Pd}(\mathrm{H})$ $\left\{\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{OSiPh}_{3}\right)\left(\mathrm{CH}_{2} \mathrm{CHOSiPh}_{3}\right)_{n} \mathrm{Me}\right\}^{+}(n=1,2)$ intermediates that link $\mathbf{9}$ with $\mathbf{1 1}$ and $\mathbf{1 0}$ with $\mathbf{1 2 .}{ }^{9}$
This work shows that (α-diimine) PdMe^{+}species can undergo multiple insertions of silyl vinyl ethers. For the case of $\mathrm{CH}_{2}=\mathrm{CHOSiPh}_{3}$, up to three sequential insertions are observed. Steric crowding may inhibit further chain growth.

Acknowledgment. This work was supported by the U.S. Department of Energy (DE-FG-02-00ER15036).

Supporting Information Available: Experimental procedures and characterization data for $\mathbf{7}$ and $\mathbf{8}$ and X-ray data for $S, S, S-7-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$ and $R, R, R-7-\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}$. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) (a) Boffa, L. S.; Novak, B. M. Chem. Rev. 2000, 100, 1479. (b) Dong, J. Y.; Hu, Y. L. Coord. Chem. Rev. 2006, 250, 47. (c) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169. (d) Berkefeld, A.; Mecking, S. Angew. Chem., Int. Ed. 2008, 47, 2538.
(2) (a) Hauptman, E.; Sabo-Etienne, S.; White, P. S.; Brookhart, M.; Garner, J. M.; Fagan, P. J.; Calabrese, J. C. J. Am. Chem. Soc. 1994, 116, 8038. (b) McKinney, R. J.; Colton, M. C. Organometallics 1986, 5, 1080. (c) Sustmann, R.; Jornung, H. J.; Schupp, T.; Patzke, B. J. Mol. Catal. 1993, 85, 149. (d) Wilke, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 185. (e) DiRenzo, G. M.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118 , 6225. (f) Nugent, W. A.; Hobbs, F. W. J. Org. Chem. 1983, 48, 5364.
(3) Luo, S.; Jordan, R. F. J. Am. Chem. Soc. 2006, 128, 12072.
(4) Flack, H. D. Helv. Chim. Acta 2003, 86, 905.
(5) (a) Pregosin, P. S.; Salzmann, R. Coord. Chem. Rev. 1996, 155, 35. (b) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
(6) LaPointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906.
(7) The NMR spectra of 7 and $\mathbf{8}$ vary slightly with counterion and temperature.
(8) Cationic polymerization of 2 was not observed in the experiments described here. 2 is polymerized by $\left[\mathrm{Ph}_{3} \mathrm{C}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, $\left[\mathrm{H}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$, or $\left[\mathrm{Li}\left(\mathrm{Et}_{2} \mathrm{O}\right)_{2.8}\right]\left[\mathrm{B}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{4}\right]$ in the presence of $\mathrm{H}_{2} \mathrm{O}$.
(9) (a) Stoebenau, E. J., III; Jordan, R. F. J. Am. Chem. Soc. 2006, 128, 8638. (b) Matchett, S. A.; Zhang, G.; Frattarelli, D. Organometallics 2004, 23, 5440. (c) Peng, T. S.; Gladysz, J. A. J. Am. Chem. Soc. 1992, 114, 4174. (d) Chang, T. C. T.; Foxman, B. M.; Rosenblum, M.; Stockman, C. J. Am. Chem. Soc. 1981, 103, 7361.
JA8056858

